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Figure 1. Illustration of M3GYM. For each sample, we provide multi-view videos with fine-grained annotations, including 2D keypoints,
3D keypoints, subject IDs, mesh, and action labels. M3GYM also includes expert assessments on action completeness for each subject,
covers diverse lighting conditions and features scenes with complex self & mutual occlusions.

Abstract

Human pose estimation is a critical task in computer vision
for applications in sports analysis, healthcare monitoring,
and human-computer interaction. However, existing human
pose datasets are collected either from custom-configured
laboratories with complex devices or they only include data
on single individuals, and both types typically capture daily
activities. In this paper, we introduce the M3GYM dataset, a
large-scale multimodal, multi-view, and multi-person pose
dataset collected from a real gym to address the limitations
of existing datasets. Specifically, we collect videos for 82
sessions from the gym, each session lasting between 40 to
60 minutes. These videos are gathered by 8 cameras, in-
cluding over 50 subjects and 47 million frames. These ses-
sions include 51 Normal fitness exercise sessions as well as
17 Pilates and 14 Yoga sessions. The exercises cover a wide
range of poses and typical fitness activities, particularly in
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Yoga and Pilates, featuring poses with stretches, bends, and
twists, e.g., humble warrior, fire hydrants and knee hover
side twists. Each session involves multiple subjects, leading
to significant self-occlusion and mutual occlusion in single
views. Moreover, the gym has two symmetric floor mirrors,
a feature not seen in previous datasets, and seven lighting
conditions. We provide frame-level multimodal annotations,
including 2D&3D keypoints, subject IDs, and meshes. Ad-
ditionally, M3GYM uniquely offers labels for over 500 ac-
tions along with corresponding assessments from sports ex-
perts. We benchmark a variety of state-of-the-art methods
for several tasks, i.e., 2D human pose estimation, single-
view and multi-view 3D human pose estimation, and human
mesh recovery. To simulate real-world applications, we also
conduct cross-domain experiments across Normal, Yoga,
and Pilates sessions. The results show that M3GYM sig-
nificantly improves model generalization in complex real-
world settings. The project is available here.

https://finalyou.github.io/M3GYM/


1. Introduction
Human pose estimation plays a pivotal role in computer vi-
sion for capturing and analyzing human movements through
visual data. It supports a broad range of applications such
as action analysis [3, 51, 52], augmented & virtual re-
ality [58, 82], healthcare [55, 56], human body anima-
tion [31, 62, 72], and human-computer interaction [9, 23].
These applications highlight the critical importance of de-
veloping pose estimation algorithms and compiling datasets
under various conditions [32, 80].

However, existing human pose datasets focus on single-
person actions [6, 25, 34, 44, 47, 54, 60, 67, 73], limiting the
applicability to real-world scenarios. Meanwhile, although
many multi-person datasets are collected, they also have
various limitations, such as lacking complex occlusions [28,
57], containing few subjects per scene [19, 24, 77], being
confined to laboratory environments [28], or relying on un-
realistic synthetic data [4, 48, 69]. Therefore, a large-scale,
diverse, multi-person pose dataset with complex poses re-
flecting real-world environments is urgently needed.

In this paper, we introduce M3GYM, a large-scale, mul-
timodal, multi-view, and multi-person pose dataset col-
lected in authentic gym environments. We collect multi-
modal and multi-view videos that captures the dynamic and
complex interactions among multiple people engaged in a
variety of fitness activities. Our goal is to address the limita-
tions of existing datasets and to provide a dataset that facili-
tates the development of human pose estimation algorithms
in realistic settings, specifically within gym scenarios with
multiple subjects. As demonstrated in Figure 1, we mount
8 cameras in a circular arrangement on the ceiling of the
gym. Then, we collect videos across 82 sessions, each last-
ing between 40 to 60 minutes, capturing over 50 subjects
and totaling 47 million frames.

Unlike most existing datasets that focus on daily activ-
ities, M3GYM includes a variety of fitness exercises. We
record 51 sessions featuring normal fitness exercises, as
well as 17 Pilates and 14 Yoga sessions. Human poses in
Pilates and Yoga exercises, such as humble warrior, fire hy-
drants, and knee hover side twists, include a wide range of
poses, particularly stretches, bends, and twists. The com-
plex movements in Pilates and Yoga often lead to self-
occlusion, where a part of the body is hidden from the
single camera view. Meanwhile, the presence of multiple
participants in each session causes substantial mutual oc-
clusion, realistically reflecting the challenges faced in real-
world pose estimation applications.

Furthermore, our dataset is unique as it incorporates el-
ements commonly seen in gyms and everyday life, such as
mirrors, which are absent in other human pose datasets. The
gym has two symmetric floor mirrors, presenting significant
challenges for existing 2D and 3D pose estimation meth-
ods due to reflections. Additionally, the M3GYM dataset

includes seven different lighting conditions, such as well-
lit, sunlight with backlighting, and various ambient lighting
setups. These features make our dataset more diverse and
contribute to the development of pose estimation algorithms
that are effective in real-world scenarios.

To ensure annotation accuracy, we design a semi-
automated pipeline for error-checking, including time-
based frame alignment, camera calibration with pixel align-
ment results, multi-view 2D keypoint voting with state-of-
the-art detectors, triangulation for 3D keypoints, physics-
based auto-calibration, inter-frame smoothing, and man-
ual inspection of 3D keypoints. Using the adjusted 3D
keypoints, we generate meshes and incorporate notes from
sports experts in each session to achieve ground truth anno-
tations. Building on this pipeline, M3GYM provides fine-
grained, per-subject multimodal annotations for each time
segment, covering 2D & 3D keypoints, subject IDs, mesh,
action labels, and expert assessments of action quality.

M3GYM supports a wide range of pose estimation tasks,
spanning 2D human pose estimation, single-view and multi-
view 3D human pose estimation, and human mesh recovery.
We provide benchmarks using state-of-the-art and widely-
used methods, along with cross-domain experiments across
three session types in M3GYM. The results show that
M3GYM challenges models and enhances their perfor-
mance in complex real-world settings. The main contribu-
tions of this research are summarized as follows:
• We introduce M3GYM, a large-scale, multimodal,

multi-view, multi-person pose dataset with fine-
grained, time-span-based annotations for each subject’s
actions, capturing authentic gym activities.

• We establish benchmarks for multiple pose estimation
tasks on M3GYM, demonstrating the challenging nature
of M3GYM and its effectiveness in enhancing model per-
formance for real-world human activity analysis.

2. Related Works
2.1. Human Pose Dataset
Human pose estimation relies on comprehensive 2D and 3D
pose datasets for effective model training and evaluation.
2D human pose datasets play a foundational role. Some,
like COCO [39], CrowdPose [33], and MPII [1], focus on
isolated images, providing essential benchmarks for pose
detection. Others, such as PoseTrack [2], introduce tem-
poral context across video sequences, enabling the study of
motion and improving pose tracking over time.

Beyond 2D pose datasets, 3D human pose datasets fur-
ther support depth-based analysis, such as HumanEva [54],
Human3.6M [25], MPI-INF-3DHP [47], FreeMan [60],
Fit3D [20], AIST++ [34], HUMBI [73], AMASS [44],
MM-Fi [67], HuMMan [6]. Although essential for 3D pose
estimation, these datasets focus on single-person data.



Table 1. Comparison of multi-view real-world human pose datasets. “#Subj Range” represents the subject range in each scene, and
“Act Type” refers to the primary types of actions included. Only HD camera data is included for CMU Panoptic [28]. MPI-INF-3DHP [47]
and FreeMan [60] include outdoor scenes, primarily in well-lit and backlighting conditions.

Dataset #Act #Frame #Camera #Subj Range #Light Act Type Envir Modalities

Video 2D Kpt 3D Kpt Mesh Act Label Act Assmt

HumanEva [54] 6 80K 7 1 - Daily Laboratory ✓ ✓ ✓ ✗ ✓ ✗
Human3.6M [25] 15 3.6M 4 1 - Daily Laboratory ✓ ✓ ✓ ✗ ✓ ✗
MPI-INF-3DHP [47] 8 1.3M 14 1 2 Daily Real-Scene ✓ ✓ ✓ ✗ ✓ ✗
CMU Panoptic [28] 5 154M 31 1-8 - Daily Laboratory ✓ ✓ ✓ ✗ ✓ ✗
CHI3D [19] 8 315K 4 2 - Daily Laboratory ✓ ✓ ✓ ✓ ✓ ✗
Fit3D [20] 47 1.96M 4 1 - Fitness Laboratory ✓ ✓ ✓ ✓ ✓ ✗
AIST++ [34] 10 10.1M 9 1 - Dance Laboratory ✓ ✓ ✓ ✓ ✓ ✗
HuMMan [6] 500 60M 11 1 - Daily Laboratory ✓ ✓ ✓ ✓ ✓ ✗
MM-Fi [67] 27 320K 3 1 - Daily Laboratory ✓ ✓ ✓ ✗ ✓ ✗
FreeMan [60] 123 11.3M 8 1 2 Daily Real-Scene ✓ ✓ ✓ ✓ ✓ ✗

M3GYM (Ours) 502 47M 8 1-10 7 Fitness Real-Scene ✓ ✓ ✓ ✓ ✓ ✓

However, multi-person 3D datasets introduce additional
challenges. CMU Panoptic [28] captures multi-person ac-
tivities but is limited by its controlled lab setting and simple
occlusions. 3DPW [57] includes outdoor scenes but lacks
dense occlusions, limiting its utility for crowded scenarios.
Datasets like CHI3D [19], EgoBody [77], and RICH [24]
focus on human-object interactions but have few subjects
per scene, reducing their effectiveness in high-density set-
tings. Synthetic datasets like AGORA [48], SynBody [69],
and BEDLAM [4] simulate interactions, but their artificial-
ity may limit real-world applicability.

In Table 1, we compare M3GYM with existing multi-
view human pose datasets captured in realistic environ-
ments. Unlike other datasets, M3GYM focuses on fitness
activities with diverse, multi-person scenes involving up to
10 subjects, resulting in significant mutual occlusions. Ad-
ditionally, 43.7% of the data centers on Yoga and Pilates,
introducing unique self-occlusions. Compared to another
fitness dataset, Fit3D [20], M3GYM includes multi-person
scenarios, more subjects & action categories, and expert as-
sessments. Particularly, Fit3D does not cover movements
provided in M3GYM’s Yoga and Pilates sessions. M3GYM
further adds complexity through its unique overhead camera
views, two floor mirrors, and seven lighting conditions.

2.2. Human Pose Estimation
Rapid progress in human pose estimation [41] is insep-
arable from the advances of deep network models [13–
16, 18, 22, 63, 64]. For 2D pose estimation, OpenPose [8]
enables real-time keypoint detection with a bottom-up ap-
proach. MediaPipe [43] offers a cross-platform frame-
work for mobile devices. DEKR [21] proposes a bottom-
up method that decouples detection and regression, refining
localization precision. AlphaPose [17] combines a region
proposal network with pose-guided refinement for multi-
person accuracy. ViTPose [66] uses Vision Transformers

for global context, achieving top results. YOLO-Pose [45]
and YOLOv7-Pose [59] adapt YOLO for pose estimation,
balancing speed and accuracy. ED-Pose [68] enhances de-
tection in complex scenes with edge-aware networks. RTM-
Pose [27] optimizes for mobile. DWPose [70] boosts effi-
ciency with depth-wise separable convolution. Sapiens [30]
provides a versatile model family for human-centric tasks,
including 2D pose estimation.

Building on these 2D approaches, 3D pose estimation
methods use 2D keypoints for 3D reconstruction [26, 53,
75, 76]. Multi-view approaches, like MV-Pose [11, 12],
leverage synchronized 2D detections for efficient multi-
person 3D estimation, while PlaneSweepPose [36] applies
depth regression through cross-view consistency. Faster
VoxelPose [71] employs a fast voxel-based technique, re-
projecting feature volumes for speed and accuracy. While
single-view methods reconstruct 3D keypoints from single-
view images, often relying on temporal or structural cues.
SimpleBaseline [46] uses a basic network to lift 2D to 3D
keypoints. Video-based methods, like VideoPose3D [49],
PoseFormer [78, 79], and MHFormer [35] integrate tempo-
ral information, while MotionBERT [81] further captures
complex motion dynamics, enhancing 3D pose accuracy.

2.3. Human Mesh Recovery

Human mesh recovery focuses on reconstructing 3D body
meshes from visual data, capturing both shape and pose [50,
61]. HMR [29] pioneers this setting with an end-to-end
framework. METRO [38] uses a transformer to enhance
vertex regression while PyMAF-X [74] refines alignment
with a pyramidal feedback loop. OSX [37] integrates body,
face, and hand estimation into a unified model. SMPLer-
X [7] achieves robust generalization across diverse datasets.
SMPLer [65] applies decoupled attention in a Transformer
for efficient 3D shape and pose estimation.
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Figure 2. Illustration of M3GYM Semi-automated Pipeline. For each sample, we align videos for each view through frame and pixel
alignment. Multiple 2D keypoint detection methods are applied across all 8 viewpoints for each frame, and median voting is used to obtain
a basic 2D keypoint set. Triangulation then produces 3D keypoints, which are refined with physics-based auto-calibration and inter-frame
smoothing before manual checking and adjustment, resulting in the final ground truth 3D keypoints. Using SMPLify, we generate meshes,
incorporating sports expert notes from each session to obtain the final mesh, action label, and action assessment for each subject.

3. M3GYM
This section introduces the recording setup and workflow of
M3GYM, including the overall semi-automated annotation
pipeline and detailed statistics of this dataset.

3.1. Recording Setup
To curate M3GYM, we establish a partnership with a real
gym. The gym offers new training sessions designed to
capture the movements of participants, and thus, all partic-
ipants are actual gym clients. Before joining, participants
need to review the experiment details and sign a written
consent form. With consent from everyone involved, in-
cluding clients and sports experts, we place eight fisheye
overhead cameras around the gym. Cameras are positioned
at each corner and the midpoint of each side of the rectan-
gular gym, recording 1920x1080 videos at 25 fps.

We obtain the parameters of each camera through a
chessboard-based calibration applied in MV-Pose [11]. By
recording the moving chessboard across all cameras, we
capture a total of 240,000 frames, which we use to derive
the intrinsic parameters for the eight cameras. Next, we
fix the chessboard at the center of the gym to calculate the
extrinsic parameters. To ensure the accuracy of camera pa-
rameters, we select 82 * 8 video segments from each session
for initial triangulation and adjust the sampling rate based
on reconstruction results.

3.2. Action Set
The action set in M3GYM comes from real training ses-
sions conducted at the partner gym. These sessions include
three types: Normal, Pilates, and Yoga sessions. In each
45-minute Normal session, sports experts design training
routines for each participant, with actions like squat jumps,
standing calf raises, mountain climbers, and burpees. Par-
ticipants train by completing a set number of repetitions for
each action. Due to variations in fitness levels and training

routines, participants often perform different actions simul-
taneously during normal sessions. Sports experts record the
specific training flow for each participant and assess their
action completeness.

Each Pilates and Yoga session lasts about an hour and
includes more complex movements with significant self-
occlusion. Pilates sessions involve movements like knee
hover side twists, pendulums, bicep curls, and straight leg
side toe reaches, while Yoga sessions include poses like
humble warrior, knee hovers, fire hydrants, and side-lying
tree. Unlike the customized routines in normal training ses-
sions, these two types of sessions are led by sports experts
who guide participants to perform each action for specific
time intervals, resulting in synchronized actions among par-
ticipants. Sports experts assess each participant’s perfor-
mance at various stages.

3.3. Semi-automated Pipeline
We design a semi-automated annotation pipeline for
M3GYM as shown in Figure 2. This pipeline extracts 2D
keypoints, 3D keypoints, and mesh results from RGB video.
Each modality includes a corresponding error correction
step, covering frame and pixel alignment, 2D annotation
voting, 3D manual adjustment, and action labeling refine-
ment based on records from sports experts.
RGB video. We process raw videos through frame and
pixel alignment to obtain synchronized RGB videos. The
eight cameras operate under a unified control system. By
recording each device’s start time on this central con-
sole, we determine the starting frame for each view (frame
alignment). To further minimize potential recording er-
rors, inspired by FreeMan [60], we capture corresponding
frames from each view after frame alignment and use Light-
Glue [40] to compute dense correspondences across views.
These correspondences are used to further refine the camera
parameters (pixel alignment).
2D keypoint. From the synchronized videos, we ex-
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Figure 3. Illustration of samples from M3GYM. (a) Diverse
lighting conditions. (b) Complex self-occlusions. (c) Mutual oc-
clusions in dense sessions. (d) Realistic gym setting with symmet-
ric floor mirrors. (e) Unique overhead view, where a single camera
may miss some participants or fail to capture a subject in full.

tract frames and apply multiple 2D pose estimation mod-
els [8, 17, 21, 27, 45, 59, 66, 68, 70] to obtain several
2D annotations for each frame. All annotations are con-
verted into the BODY25 [8] format, where we omit the six
keypoints for foot during conversion when converting out-
puts in COCO17 [39] format. Using IoU bounding box
calculations and hip distance between subjects, we match
subjects across model outputs. For each subject, we ap-
ply median voting and non-max suppression to filter the
points, producing initial 2D keypoint annotations. Among
the nine tested models, DWPose [70], RTMPose [27], and
ViTPose [66] show relatively lower rates of missed and false
detections compared to the ground truth 2D keypoint anno-
tations, making them suitable for the subsequent pipeline
stages to obtain the raw 2D keypoint annotations with confi-
dence levels across 8 views, denoted as Kpt2D ∈ R8×25×3.
To ensure the accuracy of triangulation results, we further
filter these raw 2D keypoint annotations. All points with
a confidence level below the threshold τ (we set τ = 0.5)
are marked as low confidence and removed. Subjects with
fewer than m high-confidence points (we set m = 5) or
missing essential keypoints (we set these as the left and
right shoulders) are also excluded, resulting in filtered 2D
keypoint annotations.
3D keypoint. We apply triangulation on the filtered 2D
keypoint annotations to obtain 3D keypoint with confidence
level for each subject, denoted as Kpt3D ∈ R25×4. Af-

Table 2. Key statistics of M3GYM by training session type.
These three session categories share overlapping action types and
lighting conditions. “Mean #Subj” represents the average number
of subjects per session. We determine the subject count for each
session by taking the number of individuals present for the major-
ity of the session duration.

#Session #Frame #Act #Lighting Mean #Subj

Normal 51 26,500,189 50 4 5.29
Pilates 17 10,822,689 207 4 5.59
Yoga 14 9,710,460 254 7 6.21

Total 82 47,033,338 502 7 5.51

ter non-max suppression filtering, we use bone length and
smoothing constraints introduced in HuMMan [6] to opti-
mize the 3D keypoint annotations. To ensure annotation
accuracy, we build a 3D calibration tool in Blender [10].
This tool visualizes each subject’s 3D poses in the scene
and reprojects annotations across the eight 2D views. De-
tails of the tool are provided in the supplementary materials.
Through extensive manual inspection and adjustment, we
produce ground truth 3D keypoint annotations, with the cor-
responding reprojected 2D coordinates in each view serving
as ground truth 2D keypoint annotations.
Mesh output. Inspired by Freeman [60], we use SM-
PLify [5] to fit the SMPL [42] model to our ground truth
3D keypoints, generating mesh annotations and placing the
mesh in the 3D scene based on subject coordinates. Based
on notes taken by sports experts in each session, we segment
each subject’s meshes by time duration into distinct actions,
assigning labels accordingly. By calculating changes in the
relative distances between segmented skeletons, we further
refine the action time spans. This allows us to manually
check and correct any possible errors in action counts noted
by the sports experts.

The final output of the M3GYM semi-automated
pipeline includes the mesh annotations for each subject
within specified time spans, along with the corresponding
action labels, and expert assessments of each action. Ac-
tion assessments are classified as good or poor, where for
each poor action, M3GYM also provides text-format feed-
back identifying areas for improvement.

3.4. Dataset Statistics
M3GYM contains 82 multi-person training sessions, each
lasting 40 to 60 minutes, captured by 8 overhead cameras
for a total of 47,033,338 frames. As shown in Table 2,
M3GYM includes 3 session types, Normal, Pilates, and
Yoga. Normal sessions constitute the majority, encompass-
ing 51 sessions and producing over 26 million frames, with
an average of 5.29 subjects. Pilates sessions, with 17 ses-
sions, involve more actions, resulting in 207 labeled activi-
ties across different lighting conditions. Yoga sessions, al-
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Figure 4. Detailed statistics of M3GYM. (a) The proportion of dense and sparse sessions across session types. (b) The distribution of
lighting conditions across session types. The well-lit condition is common and not shown here. (c) The proportion of hard case frames
across session types. (d) The distribution of the 50 most frequent action types in M3GYM.

though smaller in number, feature the highest average sub-
ject count (6.21) and the most diverse lighting variations,
creating richer scenarios for self-occlusions. Overall, our
dataset offers 502 distinct actions across varied lighting
conditions and subject counts.
Samples from M3GYM. Figure 3 presents some samples
from M3GYM, emphasizing its unique characteristics. (a)
Unlike existing human pose datasets, M3GYM features a
wide range of lighting conditions. In contrast to Free-
man [60], which categorizes lighting simply as backlit or
well-lit, our dataset provides clearly defined lighting set-
tings, including well-lit, sunlight with backlighting, and
colored lights used during training to create specific atmo-
spheres. (b) M3GYM, especially in the Yoga and Pilates
sessions, includes complex actions with significant self-
occlusion. Even state-of-the-art methods exhibit notable er-
rors when identifying such hard cases. (c) All videos in
our dataset contain scenes with multiple participants. This
leads to extensive mutual occlusions, challenging models to
leverage multi-view data for accurate human pose estima-
tion. (d) M3GYM replicates a realistic gym environment
with two symmetric floor mirrors, creating additional chal-
lenges for pose estimation. (e) Unlike most datasets filmed
at eye-level, ours provides a unique overhead view, where a
single camera may miss subjects or fail to capture a subject
in full, introducing further complexity.
Detailed statistic of M3GYM. In Figure 4, we present
more detailed statistics of M3GYM. (a) Previous datasets,
such as EgoBody [77] and RICH [24], focus on scenes with
up to 2 people, while CHI3D [19] includes activities with a

maximum of 3 subjects. Based on this context, we define
sessions with more than 4 subjects as dense sessions. Fig-
ure 4 (a) shows the proportion of three session types and
the proportion of dense sessions within each. The figure
shows that dense sessions overwhelmingly dominate across
all three session types, highlighting M3GYM’s emphasis
on crowded scenarios. (b) In addition to standard indoor
lighting, our dataset includes six additional lighting condi-
tions, including sunlight and various ambient lights. Fig-
ure 4 (b) shows the distribution of these extra lighting con-
ditions across different session types. (c) Our dataset in-
cludes numerous complex actions with significant occlu-
sions, causing substantial errors in many frames even for
state-of-the-art methods. Based on manual annotations,
frames requiring detailed review and adjustment are labeled
as hard cases. Figure 4 (c) displays the proportion of frame
count for each session type and the percentage of hard
case frames. The high ratio of hard case frames highlights
M3GYM’s challenge for pose estimation. (d) Our dataset
includes 502 distinct action types. Figure 4 (d) presents the
top 50 most frequent action labels in M3GYM, with fre-
quency calculated based on the presence of each action la-
bel per session for each subject. This distribution highlights
the diversity of actions in M3GYM.

4. M3GYM Benchmark
This section presents and analyses benchmark results for
various human pose estimation tasks on M3GYM. Addi-
tional experiments and details are provided in the supple-
mentary material.



Table 3. 2D pose estimation baseline on M3GYM. We present the results of widely used and state-of-the-art methods, showing inference
results and performance after fine-tuned. Bold highlights the top value within each data type.

Method Inference Fine-tuned on M3GYM

AP AP50 AP75 AR AR50 AR75 AP AP50 AP75 AR AR50 AR75

DEKR [21] 19.9 26.4 21.0 76.1 90.6 79.9 53.6 76.8 64.5 76.4 91.0 80.1
YOLO-Pose [45] 62.6 75.5 66.5 76.4 90.7 80.2 63.3 80.4 72.3 77.8 90.8 80.4
ED-Pose [68] 14.0 18.8 14.9 74.4 90.0 78.5 53.2 76.1 60.9 74.8 90.2 78.6
DWPose [70] 63.8 79.7 68.0 76.7 89.5 80.0 72.6 90.3 77.8 77.2 90.8 81.7
RTMPose [27] 64.0 80.5 69.0 76.9 90.3 81.0 72.8 90.7 78.9 77.5 91.1 82.4
ViTPose [66] 66.3 80.9 70.7 79.0 90.9 82.6 73.1 90.5 78.2 79.1 91.2 82.8

4.1. Human Pose Estimation Tasks
2D pose estimation. This task involves detecting 2D key-
points (Kpt2D) from single-view images. Models process
individual frames to identify joint positions in the image
plane, capturing the spatial configuration of the subject.
Multi-view 3D pose estimation. This task utilizes images
from multiple synchronized cameras to estimate 3D poses.
By integrating information from different viewpoints, mod-
els aim to reconstruct the 3D positions of joints (Kpt3D),
addressing occlusions and perspective ambiguities.
Single-view 3D pose estimation. This task requires models
to predict 3D joint positions (Kpt3D) from video sequences
captured by a single camera. The challenge lies in inferring
depth information from monocular inputs, and reconstruct-
ing the spatial arrangement of joints in 3D space.
Human mesh recovery. This task involves reconstructing
a 3D mesh of the human body from images. Models aim
to capture surface geometry with detail in both body shape
and pose, offering a complete representation of the subject.

4.2. Evaluation Metric
APk and ARk are common metrics in 2D pose estimation.
For example, AP50 and AR50 denote Average Precision
(AP) and Average Recall (AR) at a 50% Object Keypoint
Similarity (OKS) threshold, per COCO evaluation [39]. AP
and AR without suffixes represent averages across OKS
thresholds from 0.5 to 0.95 in 0.05 increments.
MPJPE (Mean Per Joint Position Error) is commonly
used in 3D pose estimation, measuring the mean Euclidean
distance between predicted and ground truth joint positions.
PA-MPJPE (Procrustes-Aligned MPJPE) is a variant of
MPJPE that first aligns the predicted pose to the ground
truth, removing global misalignment.

4.3. Benchmark Results
Among 82 sessions (51/17/14 for Normal/Pilates/Yoga),
9/4/3 are allocated for testing, 4/2/2 for validation, and the
rest for training, with frames subsampled to maintain data
balance and efficiency, ensuring no session-level overlap
across different sets while also minimizing identity overlap.
2D pose estimation. We evaluate several 2D pose estima-
tion models [21, 27, 45, 66, 68, 70] on M3GYM. These

models cover a range of approaches, with top-down meth-
ods like RTMPose and ViTPose generally excelling in ac-
curacy metrics, while bottom-up models such as ED-Pose
achieve strong recall. As shown in Table 3, ViTPose per-
forms highest across most metrics, with RTMPose also
achieving top scores in AP50 and AP75. The lower infer-
ence performance of DEKR and ED-Pose may result from
their bottom-up design, which faces challenges in highly oc-
cluded and varied poses in M3GYM. Notably, models fine-
tuned on M3GYM show substantial improvement over di-
rect inference, highlighting the dataset’s value in enhancing
pose estimation accuracy.
Multi-view 3D pose estimation. Multi-view 3D pose esti-
mation accuracy relies strongly on the precision of 2D de-
tection results. As shown in Table 3, ViTPose and RTM-
Pose achieve the best performance. To evaluate M3GYM’s
impact on 3D keypoint accuracy, we use MV-Pose [11] to
reconstruct 3D keypoints from the multi-view 2D keypoint
outputs of ViTPose and RTMPose, then measure their de-
viation from the ground-truth 3D keypoints. As shown in
Table 4, fine-tuning on M3GYM improves performance for
both methods, underscoring M3GYM’s ability to support
precise multi-view 3D reconstructions.
Single-view 3D pose estimation. We evaluate single-view
3D pose estimation models on M3GYM, including Simple-
Baseline [46], VideoPose3D [49], and MotionBERT [81].
Given M3GYM’s unique overhead view, only subjects with
their full ground-truth bounding boxes within the current
view are used in testing, ensuring accurate evaluation. For
multi-person scenes, we test each subject individually to
prevent errors from relative coordinate differences. As
shown in Table 5, MotionBERT achieves the lowest MPJPE
after fine-tuning (123.7), while VideoPose3D attains the
lowest PA-MPJPE (76.6). Fine-tuning on M3GYM sub-
stantially enhances each model’s performance, demonstrat-
ing the dataset’s utility in challenging gym settings.
Human mesh recovery. We evaluate human mesh recov-
ery models on the M3GYM dataset, including PyMAF [74],
OSX-SMPL [37], and SMPLer-L [65]. The evaluation
setup follows the same approach as single-view 3D pose
estimation, selecting only frames where the subject’s full
ground-truth bounding box is within the overhead view and



Table 4. Multi-view 3D pose estimation baseline on M3GYM.

Method Status MPJPE (mm) PA-MPJPE (mm)

RTMPose [27] Inference 132.4 76.9
Fine-tuned 113.5 62.7

ViTPose [66] Inference 123.6 77.8
Fine-tuned 112.3 61.7

Table 5. Single-view 3D pose estimation baseline on M3GYM.

Method Status MPJPE (mm) PA-MPJPE (mm)

SimpleBaseline [46] Inference 201.4 127.6
Fine-tuned 134.5 86.1

VideoPose3D [49] Inference 165.4 115.1
Fine-tuned 126.4 76.6

Motionbert [81] Inference 158.9 111.2
Fine-tuned 123.7 77.9

testing each subject individually in multi-person scenes to
avoid relative coordinate discrepancies. As shown in Ta-
ble 6, SMPLer-L achieves the best results, with the low-
est MPJPE and PA-MPJPE after fine-tuning. OSX-SMPL
and PyMAF also improve significantly with M3GYM fine-
tuning, underscoring the dataset’s effectiveness in enhanc-
ing mesh recovery accuracy in complex environments.
Cross-domain experiments. We conduct cross-domain
evaluations across session types in M3GYM to assess
model generalization. As shown in Table 7, models trained
on Yoga sessions perform best on Pilates, achieving the
highest AP and AR scores (90.8 and 91.9). Models trained
on Normal and Pilates sessions show limited generaliza-
tion to Yoga, likely due to Yoga’s unique poses and higher
self-occlusion. However, the Yoga-trained model’s perfor-
mance decreases significantly on Normal sessions (AP of
56.1), indicating varied adaptability across session types.
These results highlight the distinct characteristics of each
session type and underscore M3GYM’s value in testing
model adaptability.

5. Discussions and Insights

M3GYM provides key insights for advancing human pose
estimation in real-world settings. We establish a bench-
mark for testing models in realistic conditions. Its di-
verse scenarios, including varied lighting, complex occlu-
sions, floor mirrors, and unique fitness poses, allow re-
searchers to evaluate model robustness against challenges
typical of gym environments yet often absent in exist-
ing datasets. M3GYM demonstrates the importance of
multi-person and multi-view data for realistic applica-
tions. Multi-person scenes reflect authentic gym settings,
while multi-view perspectives are essential for handling oc-
clusions in complex actions and crowded scenarios. Ad-
ditionally, M3GYM emphasizes the need for activity-
specific data to enhance model adaptability. Cross-

Table 6. Human mesh recovery baseline on M3GYM.

Method Status MPJPE (mm) PA-MPJPE (mm)

PyMAF [74] Inference 189.3 118.2
Fine-tuned 155.1 94.5

OSX-SMPL [37] Inference 153.5 104.7
Fine-tuned 123.8 69.4

SMPLer-L [65] Inference 149.6 94.3
Fine-tuned 116.4 67.2

Table 7. Cross-domain evaluation of 2D pose estimation across
three session types in M3GYM.

Train Test AP AP50 AP75 AR AR50 AR75

Normal Pilates 32.0 67.3 24.6 39.4 72.8 34.9
Yoga 16.6 30.8 14.7 17.5 31.3 15.9

Pilates Normal 16.0 40.4 10.7 21.7 49.4 17.0
Yoga 11.9 22.4 11.3 13.2 24.5 12.9

Yoga Normal 56.1 83.2 59.6 59.9 84.4 63.7
Pilates 90.8 98.0 93.8 91.9 98.0 94.6

domain results reveal performance drops when models
trained on one session type are tested on others, underscor-
ing the value of specialized datasets for different activities.
Together, these insights establish M3GYM as a critical re-
source for developing adaptive algorithms suited to diverse,
gym-based applications.

Despite its strengths, M3GYM still has certain limita-
tions. For example, Pilates and Yoga sessions make up
only 31 out of 82 sessions, and lighting types beyond well-
lit conditions are relatively rare and unevenly distributed
across session types. However, Pilates and Yoga sessions
make up a substantial 43.7% of the total frames, providing
extensive data due to the long duration of each sequence.
Although the gray lighting condition appears only once, it
still includes 720,000 frames, offering sufficient data for
model training despite its limited occurrence.

6. Conclusion
In conclusion, M3GYM provides a comprehensive resource
for multimodal, multi-view, and multi-person pose estima-
tion, capturing authentic gym activities with varied sce-
narios. Its fine-grained, time-span-based annotations, sup-
ported by the M3GYM Semi-automated Pipeline, deliver
reliable ground truth for each subject and action, supporting
a wide range of tasks from 2D and 3D pose estimation to hu-
man mesh recovery. Benchmark results show that M3GYM
challenge current models and improves model performance
in complex real-world settings, making it an invaluable tool
for advancing human activity analysis under conditions of
substantial occlusion and diverse training contexts.
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